

Análisis de las variaciones temporales de la temperatura, evaporación de Tanque tipo "A" y evapotranspiración estimada con la ecuación de Penman en la región pampeana

María Florencia D'Andrea¹, María Victoria Feler² y Julie Céline Brodeur¹

(1) CONICET/Instituto de Recursos Biológicos. INTA Castelar (2) Instituto de Clima y Agua. INTA Castelar

E-mail: Florencia.dandrea@gmail.com / dandrea.florencia@inta.gob.ar

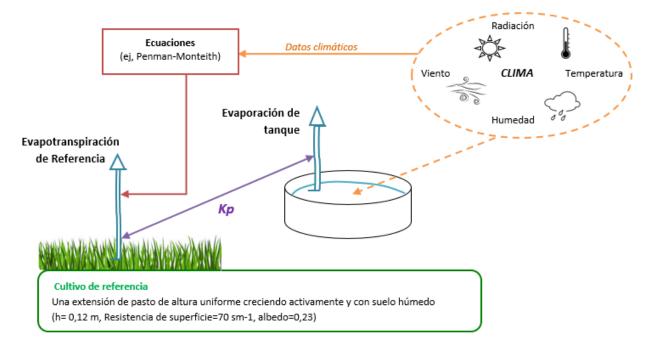
RESUMEN: La evapotranspiración de referencia (ETo) suele calcularse a partir de datos climáticos empleando ecuaciones como Penman-Monteith, debido a la dificultad de tomar mediciones a campo. Sin embargo, este parámetro del balance hidrológico también puede ser estimado desde una superficie de agua, utilizando un tanque evaporimétrico (Tanque tipo "A"), el cual integra en su medición el efecto de las variables empleadas en las ecuaciones como la radiación solar, temperatura y velocidad del viento.

Los objetivos para este trabajo fueron: (1) la compilación de datos de evaporación de Tanque tipo "A" (Etan) disponibles de las estaciones agro-meteorológicas del INTA para región pampeana, (2) la evaluación de las tendencias de temperatura, Etan y evapotranspiración estimada con la ecuación de Penman (ETp) en el tiempo.

Se estudiaron las tendencias de temperatura, Etan y ETp para las estaciones de Paraná y San Pedro en el período 1970-2014 y para la estación de Anguil en el período 1973-2005. Las tendencias de temperatura y ETp de Anguil también fueron calculadas para 1970-2014.

Si bien la temperatura aumentó significativamente para las estaciones meteorológicas evaluadas, no se observó el mismo patrón para Etan y ETp, evidenciando la posibilidad de variaciones en otros parámetros que afectan la capacidad evaporativa, tales como la radiación solar y la velocidad del viento.

INTRODUCCION


Es conocido el aumento en la temperatura media a nivel mundial ocurrido durante el siglo XX (Trenberth et *al.* 2007). Una de las consecuencias esperadas a partir de este calentamiento global es una aceleración del ciclo hidrológico, es decir un aumento tanto de las lluvias como de la evaporación (Huntington et *al.* 2006).

Mientras que las precipitaciones han mostrado un aumento con distinta variabilidad temporal y espacial (Huntington et *al.* 2006, Barros et *al.* 2014), contrariamente a lo predicho se ha reportado una disminución en las tendencias de evaporación de tanque (Peterson et *al.* 1995, McVicar et *al.* 2012). Esto ha sido el disparador de una serie de trabajos que trata de relacionar esta disminución con cambios en

otros factores climáticos que afectan la capacidad evaporativa y podrían estar contrarrestando el aumento de la evaporación por causa de la temperatura (McVicar et *al.* 2012).

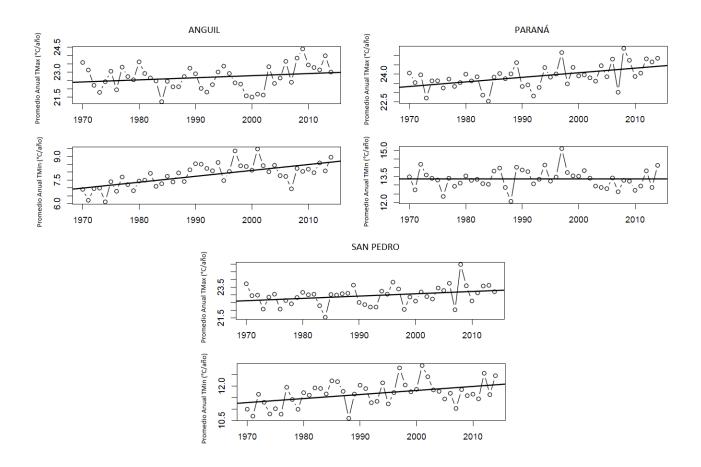
La evaporación de tanque (Etan) diaria se calcula evaluando la diferencia entre los niveles del agua en el tanque en días sucesivos, teniendo en cuenta las precipitaciones durante el período considerado. En la medición de Etan se integra el efecto combinado de la temperatura, humedad, radiación y velocidad del viento sobre la evaporación (Figura 1). En Argentina, además del Servicio Meteorológico Nacional (Juárez et *al.* 2014), se ha medido Etan en estaciones agro-meteorológicas convencionales del Instituto Nacional de Tecnología Agropecuaria (INTA).

Figura 1.- La ETo puede ser estimada a partir de ecuaciones que emplean datos climáticos como velocidad del viento, temperatura, humedad y radiación. Por otro lado, la medición de Etan integra el efecto de dichos factores climáticos en una única medición y puede emplearse para estimar la ETo empleando el coeficiente de evaporación o Kp. Esquema modificado de Allen et *al.* 1998.

La evapotranspiración es el agua que vuelve a la atmósfera tanto por evaporación como por transpiración de la vegetación. Su cálculo presenta interés agronómico ya que permite conocer las necesidades de riego de un cultivo. Para estimar la evapotranspiración de un cultivo hipotético de referencia (ETo) (Figura 1) la FAO recomienda emplear la ecuación de Penman-Monteith o calcularla a partir de datos de Etan que son afectados por un coeficiente de evaporación de tanque o Kp (Allen et *al.* 1998). Cuando la evapotranspiración no es referida puntualmente a un cultivo estándar, puede ser expresada con la ecuación de Penman (1948) (ETp) (Katerji y Rana 2011).

Los objetivos para este trabajo fueron: (1) la compilación de datos de Etan disponibles de las estaciones agro-meteorológicas del INTA para región pampeana, (2) la evaluación de las tendencias de temperatura, Etan y ETp en el tiempo.

METODOLOGÍA


Se recopilaron datos de Etan para las estaciones agro-meteorológicas del INTA de la región pampeana. En este trabajo se emplearon las estaciones de Anguil, Paraná y San Pedro, debido a que presentaban series de Etan con más de 30 años de datos continuos. Los datos de ETp (Penman et *al.* 1948), temperatura máxima (TMax) y mínima (TMin) se encuentran disponibles online para su descarga partir de la plataforma del Sistema de Información y Gestión Agro-meteorológico de INTA (SIGA): www.siga2.inta.gov.ar. La estación de San Pedro cuenta con todos sus datos publicados en Zanek et *al.* 2015.

Se calcularon para dichas estaciones las tendencias de los valores promedio anuales de TMax, TMin, Etan y ETp para el período 1970-2014. En la estación de Anguil se contó con datos de Etan para el período 1973-2005, por lo que las tendencias de TMin, TMax y ETp se calcularon para ambos períodos (1970-2014 y 1973-2005). Los análisis se realizaron empleando el test no paramétrico de Mann-Kendall con el software R.

RESULTADOS

Se observaron aumentos significativos en las temperaturas para las estaciones evaluadas (Figura 2). En el caso de la estación de Paraná el aumento significativo se detectó en TMax (P=0,00079), mientras que en la estación de San Pedro el incremento fue significativo tanto para TMax (p=0,024), como TMin (p=0,019). En la estación de Anguil solo TMin presentó un aumento significativo tanto para el período 1970-2014 ($p=1,4x10^{-6}$) como 1973-2005 ($p=4,85x10^{-6}$).

Figura 2.- Tendencias de los promedios anuales de TMin y TMax en el periodo 1970 a 2014 para las estaciones de Anguil, Paraná y San Pedro. Los aumentos fueron considerados significativos cuando p<0,05.

Las tendencias de ETp y Etan no presentaron variaciones significativas para ninguna de las estaciones evaluadas (Tabla 1). La estación de Anguil no presentó tendencias significativas de ETp para 1970-2014 ni 1973-2005, así como tampoco de Etan para 1973-2005.

Tabla 1.- Tendencias de ETp y Etan calculadas con el test no paramétrico de Mann Kendall. Hipótesis Nula (Ho): no hay tendencia monotónica. Para un p-Valor significativo el signo de Tau indica si la tendencia es positiva o negativa. Se consideran tendencias significativas si p<0,05.

Estación	Período		Test de Mann Kendall	
			Tau	P-Valor
Anguil	1973 - 2005	Etan	-0,178	0,163
		ETp	-0,011	0,938
	1970 - 2014	ЕТр	0,074	0,485
Paraná	1970 - 2014	Etan	0,022	0 ,837
		ЕТр	-0,018	0,868
San Pedro	1970 - 2014	Etan	0,103	0,323
		ЕТр	0,111	0,286

CONCLUSIONES

En los períodos de estudio considerados fue observado un aumento significativo de las tendencias de TMin o TMax, mientras que no se registraron tendencias significativas para la ETp y Etan. Sería de interés evaluar el rango diurno de temperaturas (TMax – TMin), así como otras variables que afectan el proceso evaporativo como la velocidad del viento (McVicar et *al.* 2012) y la radiación solar (Wild et *al.* 2005), para comprender mejor los resultados obtenidos para ETp y Etan en el marco de un aumento en la temperatura (Donohue et *al.* 2010).

En nuestro trabajo no se observaron contradicciones entre las tendencias de Etan y ETp. Existe documentación que registra variaciones significativas diversas entre las tendencias de Etan, ETp y ETo en otros países (Johnson et *al.* 2007, Xu et *al.* 2006, Cohen et *al.* 2002). Comprender las diferencias entre estas estimaciones de evapotranspiración es de interés considerando que a partir de las mismas se calculan las necesidades de consumo de agua (Fu et *al.* 2009).

Agradecimientos Las autoras de este trabajo agradecemos a los observadores meteorológicos de las experimentales consultadas y al personal del Instituto de Clima y Agua del INTA, en especial a Vanesa Ramis, Natalia Gattinoni y Graciela Cazenave.

BIBLIOGRAFÍA

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

Barros, V. R., Boninsegna, J. A., Camilloni, I. A., Chidiak, M., Magrín, G. O. and Rusticucci, M., 2015. *Climate ch ange in Argentina: trends, projections, impacts and adaptation*. WIREs Clim Change, 6: 151–169. doi: 10.1002/wcc.316

Cohen, S., Ianetz, A., & Stanhill, G., 2002. *Evaporative climate changes at Bet Dagan, Israel, 1964–1998.* Agricultu ral and Forest Meteorology, 111(2), 83-91.

Donohue, R. J., McVicar, T. R., & Roderick, M. L., 2010. Assessing the ability of potential evaporation formulation s to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1), 186-197

Fu, G., Charles, S. P., & Yu, J., 2009. A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97(1-2), 193-214.

Huntington, T. G., 2006. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319(1), 83-95.

Johnson, F., & Sharma, A., 2007. *Estimating evaporation–issues and challenges*. MODSIM07–Land, Water and En vironmental Management: Integrated Systems for Sustainability, Proceedings, 589-595.

Juárez H.J., Ferreira L.J., 2014. *Recopilación de datos de evaporación de tanque de la Red del Servicio Meteorológico Nacional*. 2do encuentro de investigadores en formación de recursos hídricos. Instituto Nacional del Agua, 6 y 7 de octubre 2014, Ezeiza, Buenos Aires.

Katerji, N., & Rana, G., 2011. Crop reference evapotranspiration: a discussion of the concept, analysis of the proce ss and validation. Water resources management, 25(6), 1581-1600.

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., & Mescherskaya, A. V., 20 12. *Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evapora tion.* Journal of Hydrology, 416, 182-205.

Penman, H. L., 1948. *Natural Evaporation from Open Water, Bare Soil and Grass*. Proc. R. Soc. Lond., A, 193, 120 –145.

Peterson, T. C., Golubev, V. S., and Groisman, P. Y., 1995. Evaporation losing its strength. Nature 377, 687-688.

Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai, 2007. *Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis.* Contribution of Working Group I to the Fourth Assessment Rep ort of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New Y ork, NY, USA.

Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., & Tsvetkov, A., 2005. From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308(5723), 847-850.

Xu, C. Y., Gong, L., Jiang, T., Chen, D., & Singh, V. P., 2006. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327(1), 81-93.

Zanek C., Delprino M.R., Francescangeli N., Uviedo R., 2015. 50 años de Estadísticas Agroclimáticas en la Estación Experimental Agropecuaria INTA San Pedro 1965-2014. San Pedro, Buenos Aires. Ediciones INTA, 2015.